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Abstract: 
 

The design of renewable energy systems that positively affect community health has several competing goals 

and limitations. Due to conflicting health and sustainability goals, limited resource availability, and high 

complexity of energy system characteristics, traditional optimization methods generally struggle to address 
these sparse, multi-objective problems (SMOPs) successfully. This study introduces RESH-AMHO 

(Renewable Energy Systems for Health using Advanced Meta-Heuristic Optimization), a new strategy that 

uses powerful meta-heuristic optimization methods to conquer these obstacles. Renewable energy system 
designs that can give the greatest overall results for community welfare can be identified by utilizing RESH-

AMHO, which integrates numerous optimization methods, including Genetic algorithms (GA) and Particle 

Swarm Optimization (PSO), to explore the complicated search space. Data imputation is used initially to 
deal with missing values in community health datasets, guaranteeing a thorough study. It uses the 

complementary strengths of multiple meta-heuristic techniques to strike a balance between the numerous 

health measures, environmental effects, and energy system performance. Healthcare providers and energy 
planners can benefit greatly from the insights provided by RESH-AMHO and systematically evaluate these 

diverse objectives when deciding to deploy renewable energy. Compared to conventional optimization 

methods, the experimental results show that RESH-AMHO performs better when dealing with sparse, multi-
objective issues related to the planning of renewable energy systems. This research shows that advanced 

optimization methods can help make communities more egalitarian and resilient by connecting sustainable 

energy solutions with good community health outcomes. 

 
Keywords: Sparse Multiobjective Optimization Problem, Meta-heuristic Optimization, Genetic 
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1. Introduction  

The healthcare industry is rapidly becoming a data-driven enterprise due to the 
proliferation of health monitoring technologies like wearable and electronic health records. 

Unfortunately, several problems stemming from the worldwide health crisis have created 
a crisis, such as insufficient health services, large gaps between rural and urban areas, 
and a lack of medical professionals to handle urgent cases [1]. Sparse multiobjective 

optimization problems (SMOPs) are widely encountered in the scientific and technical 
domains. Numerous aims but few ideal solutions characterize these problems [2]. Since 

the goals of SMOPs sometimes conflict with one another, there isn't a single solution that 
makes every goal optimal; instead, there are several trade-off solutions for SMOPs that are 

known as Pareto optimal solutions, where achieving one goal will inevitably result in a 
decrease in another [3]. Such problems have sparse Pareto optimum solutions, meaning 
that most of the solution's choice variables are zero [4].  Treatment selection is made much 

more difficult by the wide range of available options and the lack of consistency in the 
research that has already been done. This makes identifying the most effective treatment 

alternatives challenging, partly due to inconsistent usage of standardized grading 
methodologies [5]. The primary focus of healthcare systems has shifted away from patient 

treatment. People in authority should prioritize promoting healthy behaviors and 
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preventing diseases that are preventable. It was during the COVID-19 epidemic that this 
became public knowledge and a major issue [6]. 

 Personalized medicine benefits from the potential to predict host phenotypes using a 
taxonomy-informed selection of features to create a relationship between the microbiome, 

forecast different disease states, or enhance human health [7]. Effective solutions for 
pattern recognition and computer vision issues are now achieved through artificial 

intelligence and deep learning approaches. Intelligent approaches can robustly examine 
collected images and guarantee maximal accuracy in results [8]. Although early detection 

is challenging, it can greatly increase patient survival rates. To reduce the death rate and 
improve clinical decision-making, physicians have recently backed improved detection by 
machine learning (ML) driven predictive models [9]. A strategy that can offer workable 

answers to such problems is using metaheuristic algorithms. Metaheuristic algorithms 
are becoming increasingly popular in healthcare data due to their effectiveness in 

providing more accurate and practical illness diagnoses than historical techniques [10]. 
The data about a patient includes things like demographics, test results, pictures, video 

clips, and more. Given the volume and vast dimensions of the data, manually extracting 
the needed information from the massive amount of data is an enormous undertaking 
[11].  

For designing renewable energy systems that plan for better health in the community, 
it must go through a balancing act of goals and limitations pulling in different directions. 

Conflicting health and sustainability goals, resource constraints, and characteristic 
complexities of an energy system, all together, make it quite difficult for traditional 

methods of optimization to resolve sparse multi-objective optimization problems 
effectively. Thus, this work describes an approach called RESH-AMHO, whose powerful 
metaheuristic optimization methods seek to overcome such challenges. The RESH-AMHO 

approach utilizes many optimization techniques, like GA and PSO, which can efficiently 
search the rich, complex landscape for promising renewable energy system configurations 

that produce maximum overall benefit contributions to community welfare. 
The main contribution of this paper is 

• To employ data imputation to handle missing values in community health 
datasets, ensuring a comprehensive analysis.  

• To utilize the complementary strengths of diverse meta-heuristic techniques to 
balance the multiple, often conflicting objectives related to health measures, 

environmental impacts, and energy system performance.  

• To provide insights that can greatly benefit healthcare providers and energy 
planners by enabling the systematic evaluation of these diverse objectives when 

deciding on renewable energy deployments. 

The proposed RESH-AMHO approach uses advanced metaheuristic optimization in the 

design of renewable energy systems for maximal community health benefits. It utilizes 
data imputation and integrates several optimisation techniques to balance the various 

competing goals on the energy system's health, environment, and performance. It 
outperforms traditional approaches whereby healthcare providers and energy planners 
use it for more insightful decisions on renewable energy deployments. This work will show 

how optimized sustainable energy solutions can foster more equitable and resilient 
communities by aligning with positive health outcomes. 
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2. Literature Review 

Al-Hashimi, M. et al. [12] introduced a framework that combines mining approaches 
with hybrid meta-heuristics to solve optimization and analytical problems. Grey Wolf 
Optimisation (GWO) ensures variation and convergence using a spiral path. The Genetic 

Algorithm (GA) is introduced to promote convergence. Additionally, they used Naïve Bayes 
and support vector machines to analyze and extract vital heart data gathered from 

sensors. The objective is to develop electronic healthcare (E-Health), which connects 
patients and medical professionals to track, identify, and save pertinent data. 

By combining the metaheuristic feature selection algorithms for cuckoo searching (CS), 
the Flower Pollination Algorithm (FPA), the Whale Optimization Algorithm (WOA), and 
Harris's Hawks Optimization (HHO), Ay. S et al. [13] sought to use a machine learning 

(ML)--based improved cardiac illness prognosis and survival model for patients with heart 
failure. To assess the algorithms' effectiveness, this study is now analyzing datasets 

related to heart disease, including ECG and heart sound signals. 
Hassaballah, M., et al [14] presented an automated method for arrhythmia 

classification by combining ML classifiers with a new metaheuristic optimization (MHO) 
technique. The MHO is responsible for optimising the classifiers' search parameters. The 
method comprises three stages: Feature extraction, classification, and preprocessing of 

electrocardiogram signals. Using the MHO technique, four supervised ML classifiers—
support vector machine (SVM), k-nearest neighbors (kNNs), gradient boosting decision tree 

(GBDT), and random forest (RF)—had their learning parameters tuned for the 
classification task. This research could use more advanced classification algorithms, such 

as deep learning. 
Khan, M. A., & Algarni, F. [15] proposed an IoMT framework for the medical evaluation 

of cardiac disease. The framework employs an adaptive neuro-fuzzy inference system 

(ANFIS) and modified salp swarm optimization (MSSO) to increase the accuracy of the 
prediction. The suggested MSSO-ANFIS makes Levy flying algorithm enhancements 

possible. Since ANFIS's regular learning mechanism relies on gradient-based learning, it 
can easily become stuck in local minima. It doesn't handle information gathered from 

wearable gadgets and other items on the market. 
Fathollahi-Fard, A. M., et al. [16] solved the home healthcare dilemma with innovative 

and well-established metaheuristics. Despite its use in other optimization situations, the 

social engineering optimizer (SEO) has not been implemented in healthcare scheduling 
and routing. Creating an adaptive memory strategy—AMSEO—as a new multi-objective 

SEO version is another novel development. To fully capture the essence of optimizing home 
healthcare, it is essential to consider the potential addition of other financial and social 

elements.  
Riaz M. et al. [17] aim to investigate various chest image categorisation methods, such 

as using metaheuristics to optimize and choose features for DL and ML models. This study 

aims to address future issues in COVID-19 detection in medical scans by focusing on 
applications of several forms of metaheuristics. An enormous obstacle in building a big 

dataset is the labour-intensive and time-consuming process of manually annotating the 
images. 

Tian, Y. et al. [18] used a multiobjective genetic algorithm to maximize the module's 
association with the disease and its intra-link density after building sample-specific 
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networks that incorporate their tailored properties for each disease sample. Experimental 
findings on the asthmatic gene expression dataset show the suggested method 

outperforms several state-of-the-art methods for identifying disease modules. In addition, 
by utilizing the determined disease module for both disease control and sample 

classification, a decreased classification error rate is achieved compared to current 
methods. This study does not involve the classification accuracy and expression values of 

genes. 
Oh, B. K., & Kim, J. [20] proposed a multi-objective optimisation strategy, which 

considers the efficiency of CNN training and the performance of predictions. They used 
the two objective-function approaches to optimize the structure response estimation and 
then looked at the solutions that came out of it. In addition, we distinguish between two 

groups of solutions that are biased toward the two objective functions, and we offer an 
approach to minimize the disparity between these groups by considering their trade-off 

connection. This study's focus on dynamic strain estimation from structures' dynamic 
displacement measurements restricts the applicability of the suggested method. 

3. Proposed Work 

a. Dataset Explanation 

The central telephone survey system for health-related questions in the US is the 
Behavioral Risks Factor Surveillance System. Data on preventative care utilization, 

chronic health conditions, and health-related risk behaviors are gathered from American 
individuals. Data on preventative care utilization, chronic health conditions, and health-

related risk behaviors are gathered from American individuals. The dataset provides a 
thorough understanding of people's health profiles across a range of demographics by 

focusing on important markers, including cardiovascular disease, smoking, alcohol 
intake, and more. Columns like PhysicalHealth, MentalHealth, Stroke, Diabetes, Physical 
Activity, GenHealth, SleepTime, KidneyDisease, SkinCancer, and Asthma are included in 

this dataset.  

b. Sparse Multiobjective Optimization Problems (SMOPs) in Health Patterns  

Health patterns involving SMOPs require the optimization of numerous objectives that 
often conflict with each other when the solution space is sparsely populated. The sparsity 

can occur if a small number of potential solutions is viable or relevant, due to limitations 
or the intrinsic characteristics of the situation. Within the context of health patterns, this 
could mean figuring out how to improve health outcomes while also achieving other, more 

varied goals, such reducing costs, increasing patient satisfaction, and ensuring that 
everyone has access to quality healthcare. In Health Patterns, Figure 1 displays the 

essential features of SMOP. Several important aspects of SMOPs in health trends make 
them complicated and useful tools for healthcare optimization. The competing goals 

characterising these issues are improving patient outcomes and reducing costs and 
treatment duration. Sparsity is a key feature of the solution space; it means that not all 
alternatives are feasible or important because of limitations like medical advice, scarce 

resources, or patient-specific factors. Sparsity allows for a more precise and efficient 
optimization by drastically reducing the search space. In addition, these problems are 

characterized by competing objectives, as improving one part might worsen another, 
necessitating careful evaluation of the benefits and drawbacks. 
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Figure 1 Key Characteristics of SMOP in Health Patterns 

Medical processes, financial limits, resource availability, and patient preferences are 
some factors that impact SMOPs in health patterns. These constraints must be thoroughly 

evaluated and met during the optimization process. 

c. The proposed RESH-AMHO method 

 
 

 
 
 

 
 

 
 

 
 
 

 
Figure 2 Methodology of the SMOPH-MHOT system 
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Figure 2 depicts the steps involved in the suggested SMOPHP-MHOT framework. The 
proposed system involves the following steps: 

Data collection: Data collection in healthcare includes information about patients' 
health and the healthcare system's efficiency from various sources. Providing structured 

and unstructured information for continuous analysis, electronic health records (EHRs) 
digitally store patients' medical histories, including clinical data, diagnoses, prescriptions, 

and test results. Various patient surveys offer direct insights into quality of life, 
satisfaction with care, and patient-reported outcomes. Medical devices can provide data 

about vital signs and certain health issues continuously or periodically, such as clinical 
monitoring equipment and wearables. Diagnosis and treatment monitoring rely heavily on 
laboratory findings from clinical diagnostics. Among these procedures, genetic testing, 

urine analysis, and blood work are included. By merging data from many sources, 
researchers and doctors will have a more robust dataset they can use to study patients, 

monitor their recovery, and enhance healthcare delivery. 
Data Imputation: This part is divided into two parts. Using K-nearest neighbour (KNN) 

requires first identifying the missing data. The second step is to verify the accuracy of the 
replicated dataset.  

Step 1: One reliable method for filling in datasets with missing data is the K-Nearest 

Neighbors (KNN) imputation, which calculates values from the K most comparable 
samples. It is based on the idea that comparable information should have similar values 

for missing attributes, and this strategy works. Step one is to find nearby samples and 
then use cross-validation to optimize the K-value. Step two is to determine their distance 

from each other using the formula for Euclidean distance by eq 1. Then, if the variable is 
continuous, the imputation is done using the mean shown in eq 2. If the variable is 
categorical, the mode in eq 3 or median in eq 4 are used. KNN imputation excels with 

Missing At Random (MAR) data, is flexible enough to work with different kinds of variables, 
and can keep feature associations intact. Researchers and scientists dealing with 

incomplete datasets will find it an invaluable tool because it provides a flexible way to 
handle missing values while preserving the dataset's basic structure. 

𝑒𝑑(𝑖, 𝑗) = √∑ (𝑥𝑖𝑚 − 𝑥𝑗𝑚)
2𝑛

𝑚=1                       (Eq.1) 

𝑥𝑖 =
1

𝐾
∑ 𝑥𝑎𝑖

𝐾
𝑎=1                                                   (Eq.2) 

𝑥𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥1𝑖, 𝑥2𝑖 , … . , 𝑥𝐾𝑖)                                 (Eq.3) 

𝑥𝑖 = 𝑚𝑜𝑑𝑒(𝑥1𝑖, 𝑥2𝑖, … . , 𝑥𝐾𝑖)                          (Eq.4) 

where 𝑒𝑑(𝑖, 𝑗) is the Euclidean distance between the sample 𝑖 and 𝑗. 𝑥𝑖𝑚 refers to the 
𝑚th feature value for the sample 𝑖 and 𝑥𝑗𝑚 refers to the 𝑚th feature value for the sample 

𝑗. 𝑥𝑖 is the Imputed value for the missing feature in the sample 𝑖, 𝐾 is the number of the 

nearest neighbour, 𝑥1𝑖, 𝑥2𝑖 , … . , 𝑥𝐾𝑖 are the 𝑖th feature values for the 𝐾 nearest neighbour 

and 𝑥𝑎𝑖 is the 𝑖th feature values for the 𝑎 nearest neighbour.  
Step 2: Validation is necessary after imputation to ensure the imputed dataset 

maintains the original data's statistical integrity and linkages. This validation approach 

consists of many important steps. The first step is to check that the real and imputed 
dataset means for each variable are reasonably close by computing them simultaneously. 
Step two involves conducting correlation analysis and analyzing the associated grids of 

the two datasets to ensure that the variables' links have not been broken. To make sure 
the imputed data is comparable to the original data, the next step is to check for pattern 
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consistency. Through the utilization of cross-validation, the process of an imputation 
strategy was determined. Assigning credit to some known values at random and then 

comparing the two sets of data was the process involved here. Lastly, a sensitivity analysis 
is conducted to evaluate and compare various K values in order to guarantee that the 

imputed technique is strong. This thorough validation process ensures that the duplicated 
dataset faithfully reproduces the properties of the original data and efficiently handles 

missing values. 
Defining Objectives: A multiobjective optimization issue seeks to optimize numerous 

objectives simultaneously. 
Objective 1: Minimizing Treatment Costs  
The goal is to provide healthcare at the lowest possible cost without compromising on 

quality. Finding and running the provided eq 5 allows for efficient management of various 
treatment components. 

𝑀𝐶 = ∑ 𝑐𝑖
𝑁
𝑖=1                                  (Eq.5) 

where 𝑀𝐶 refers to the cost-minimizing procedure,  𝑁 is the total number of treatments, 

𝑐𝑖 is the cost of the 𝑖th therapy. 
Objective 2: Maximizing Patient Recovery 
The objective is to improve the percentage of patients who recover completely or 

partially from their medical issues after treatment. The technique enhances patient health, 

recuperation times, and overall well-being. Here, eq. 6 provides the mathematical model. 

𝑀𝑅 =
1

𝑀
∑ 𝑟𝑗

𝑀
𝑗=1                                            (Eq.6) 

where 𝑀𝑅 refers to the total recovery rate, 𝑀 is the number of patients, and 𝑟𝑗 is the 

recovery rate of the 𝑗th patient. 
Objective 3: Minimizing Side Effects 
This objective aims to reduce the frequency, intensity, and duration of adverse 

responses and other undesired consequences caused by medical interventions, drugs, and 

treatments. It also aims to provide effective care while causing patients as little pain and 
suffering as possible. This can be obtained by the eq 7. 

𝑀𝑆 = ∑ 𝑠𝑘
𝐾
𝑘=1                                     (Eq.7) 

where 𝑀𝑆 refers to the minimizing side effects, 𝐾 is the total number of side effects 

considered, and 𝑠𝑘 is the severity of the 𝑘th side effects.  
Defining Constraints: The optimization problem must consider many restrictions to 

make it practical and applicable.  

Constraints 1: Budget Limitation 
Budget constraints limit healthcare actions, treatments, or programs. These 

constraints indicate the greatest financial resources available within a certain time frame. 

All healthcare decisions and allocations must stay within the limits of available funds, and 
these constraints ensure that. This is represented as in eq 8. 

𝐶 ≤ 𝐵                                                             (Eq.8) 
where 𝐶 is the total treatment cost, and 𝐵 refers to the total available budget. 
Constraints 2: Availability of Medical Resources  

The term "available medical resources" describes the limited pool of healthcare 
resources that can be used to treat patients in a specific location and period. Decisions 

and allocations in healthcare must stay within the confines of what is technically and 
practically practicable to maintain this limitation, as in Equation 9. 

∑ 𝑟𝑥 ≤ 𝑅𝑚
𝑁
𝑥=1                                                  (Eq.9) 
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where 𝑅𝑚 is the total available medical resources,  𝑟𝑥 is the resource requirement for 

the 𝑥th treatment.  
Applying Advanced MHOT: These strategies can analyse and optimise health 

patterns. It involves following steps. 

Selecting Metaheuristic Algorithms: This process involves selecting the appropriate 
algorithm that suits the health patterns. The selected algorithms for this are PSO and GA. 

PSO finds the best solution by acting out the same social behaviour as a fish schooling or 
bird flocking. Every swarm particle embodies a possible solution. Generalized optimization 
GA works by mimicking natural selection. It employs mutation, selection, and crossover 

operators to evolve a community of solutions. Combining the strengths of these two 
methods to explore (PSO) and exploit (GA) the solution space efficiently. Rapid convergence 

to solution space regions with high potential is achieved via PSO. GA procedures in these 
areas are utilized for solution fine-tuning. 

Initializing: Gather a variety of basic treatment plans to get things rolling. Each plan's 
vector includes medication dosages, treatment frequency, lifestyle advice (food, exercise), 

and resource allocation.  
PSO Update: We must first calculate the velocity and update the position for each 

treatment plan.  

GA Operation: Selection: Picking the most effective reproductive treatment plans based 
on the results from the previous sections. 

Fitness Evaluation (𝐹):  Considering several goals when assessing any treatment plan: 

a. Cost (𝑓1): The sum of all resources, treatments, and medications. 
b. Rate of Recovery (𝑓2): Anticipated enhancement in patient well-being. 

b. Adverse Effects (𝑓3): The frequency and severity of anticipated adverse effects. 

d. Equity (𝑓4): A metric for gauging the plan's fairness in allocating healthcare funds. 
The formula for total fitness is given in eq 10. 

𝐹 = 𝑤1𝑓1 +  𝑤2𝑓2 +  𝑤3𝑓3 + 𝑤4𝑓4                         (Eq.10) 

where weights 𝑤1, 𝑤2, 𝑤3, 𝑤4 are assigned to each target. 
Repeat: Iterating the steps PSO Update, GA Operation, and Fitness Evaluation until 

the convergence conditions are satisfied or until the specified number of iterations has 
passed. Possible determinants of convergence include the best fitness not improving 

noticeably despite multiple iterations, the Endpoint for iteration count, and the Optimal 
degree of physical fitness attained. 

By keeping a Pareto front of non-dominated solutions, multi-objective optimization can 
be achieved. The outcome is optimal health patterns or treatment plans that balance cost-
effectiveness, recovery rates, side effect minimization, and equitable resource allocation. 

4. Results and Discussion 

The outcome is optimal health patterns or treatment plans that balance cost-

effectiveness, recovery rates, side effect minimization, and equitable resource allocation. 
This approach improved accuracy, reliability, and optimization performance and balanced 

multiple objectives by successfully managing sparse data with imputation methods and 
combining several MHOTs, such as GA and PSO. It proved resilient to data complexity, 
efficiently handled big, complicated datasets, and gave healthcare practitioners useful 

insights. 
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a. Experimental Setup 

The RESH-AMHO technique will be experimentally evaluated using several essential 
performance metrics. Several metrics are used to assess optimization performance, 

including computational efficiency and execution time, as well as accuracy measures like 
total prediction accuracy. The success rate is also calculated to find a satisfactory or ideal 

answer according to certain criteria. Constraint Adaptation Index (CAI) adapt to changes 
in optimization constraints. A comprehensive assessment can be provided by comparing 
the RESH-AMHO technique to other relevant methodologies mentioned in the literature 

survey using these performance measures.  The methodologies that are used to compare 
are the methods that combine meta-heuristics with mining, such as GWO, GA, Naïve 

Bayes, and support vector machines [12], model that integrates four metaheuristic feature 
selection algorithms: Cuckoo Search (CS), Flower Pollination Algorithm (FPA), Whale 

Optimization Algorithm (WOA), and Harris's Hawks Optimization (HHO) in [13], and 
ANFIS-MSSO [15]. 

b. Comparison Metrics for the Metaheuristic Optimization Method 

1. Overall Prediction Accuracy 

Overall prediction accuracy is essential for measuring the proportion of right 

predictions generated by a model out of all forecasts. It can be obtained from the eq 11.  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                    (Eq.11) 

 

where  𝑇𝑃 is the True Positives, 𝑇𝑃 is the True Negatives, 𝐹𝑃 is the False Positive and 𝐹𝑁 
is the False Negative.  

Figure 3 illustrates the comparison analysis of the metric overall prediction 

accuracy for the proposed and conventional methods. One of the most important ways to 
measure a predictive model or algorithm's performance is by looking at its overall 

prediction accuracy. Effective decision-making and patient treatment depend on health 
pattern analysis, which requires high precision. Higher prediction accuracy in health 

pattern analysis can lead to more accurate diagnoses, more effective treatment programs, 
and better patient health outcomes. Consequently, healthcare settings could benefit 
greatly from an approach that improves overall prediction accuracy. 

 
 

 
 

 
 
 

 
 

 
 

 
 

Figure 3 Overall prediction Accuracy comparison analysis 
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2. Computational Efficiency 

      Computational efficiency is defined as a program or algorithm's utilization of memory 
or time. This metric focuses on temporal complexity, which is inversely proportional to 

scalability and execution time. 
       Execution time: An algorithm's execution time denotes the time it takes to finish a 

task. It depends on factors like Input size (n), Hardware specifications, Programming 
language and Compiler optimization, and Algorithm design. By utilizing asymptotic 

analysis that centres on the growth of execution time with input size, it is possible to 
examine execution time apart from hardware and implementation parameters. The upper 

bound of an algorithm's temporal complexity is described using Big 𝑂 notation. It shows 
the most extreme instance if the execution time grows exponentially with the input size. 

It is denoted in eq 12.  

𝑇(𝑛) = 𝑂(𝑓(𝑛))                                   (Eq.12) 

where  𝑇(𝑛) is the execution time function, 𝑛 refers to the input size, 𝑓(𝑛) is a function 

that describes the growth rate. Some of the common time complexities are 𝑂(1) – Constant 

time, 𝑂(log 𝑛) Logarithmic time, 𝑂(𝑛) Linear time, 𝑂(n log 𝑛) Linearithmic time, 𝑂(𝑛2) 
Quadratic time, 𝑂(2𝑛) Exponential time. Figure 4 shows the comparative analysis of 

execution time for 𝑂(1)- constant time. 
 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

Figure 4 Execution Time Analysis (O(1)) 

       More effective utilization of computer resources is typically indicated by shorter 

execution times. This kind of efficiency can lead to savings in healthcare systems and 
better overall performance, especially when resources are shared or limited. With the 
RESH-AMHO approach showing substantially reduced execution times, it may be possible 

to process health data in real-time or near-real-time, which is becoming more relevant in 
contemporary healthcare systems. The RESH-AMHO method’s design decisions, especially 

its capacity to efficiently manage sparse data and various objectives, would be validated 
by demonstrating constant time performance. 
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3. Success Rate 

       This metric quantifies the frequency at which an algorithm produces a satisfactory or 
ideal answer according to certain criteria. Success Rate is the percentage of cases that 

result in the anticipated health outcome. This could be relevant in various situations, 
including Efficiency of treatment, Precision in diagnosis, Changes in health-related 

behaviour interventions, and Assessment of health screening predictive models. The 
Success Rate is calculated using eq 13. 

𝑆𝑟 =
𝑁𝑠𝑐

𝑁
                                       (Eq.13) 

where 𝑆𝑟 is the Success rate, 𝑁𝑠𝑐 refers to the number of successful cases, and 𝑁 is the 
total cases. The success rates of the suggested and standard approaches are compared in 
Figure 5. 

 

 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

Figure 5 Success Rate Analysis 

In many healthcare settings, the Success Rate measure is useful for comparing the 

efficacy of various medical treatments. The percentage of patients who show improvement 
after a specific regimen can be measured using this method in the context of medicine or 

therapy. Dietary improvement and other healthy lifestyle change initiatives can be 
assessed with the use of the Success Rate. In conclusion, the Success Rate can be used 

to evaluate health monitoring predictive models. If a model successfully identifies 
individuals at risk for specific conditions, it can enable timely preventative treatments. 

4. Constraint Adaptation Index (CAI) 

       Algorithms are evaluated using the Constraint Adaptation Index, which measures 

their ability to adapt to changes in optimization constraints. In health pattern analysis, 
where conditions and constraints can vary quickly, it measures the algorithm's speed in 

responding to dynamic constraints. It can be obtained from eq 14. 

                    𝐶𝐴𝐼 = 1 − (
𝑇𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛

𝑇𝑡𝑜𝑡𝑎𝑙
)                             (Eq.14) 
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 where 𝑇𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 refers to the time it takes for the algorithm to adjust to new restrictions 

and return to an optimum state where it is productive, and 𝑇𝑡𝑜𝑡𝑎𝑙 is the entire time required 
for optimization, beginning to end.  

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
Figure 6 CAI analysis over time 

      Figure 6 shows the CAI analysis over time. A higher CAI rating indicates greater 
flexibility in responding to new or altered constraints. If the CAI were near 1, it would 

indicate that the algorithm adapts quickly compared to the entire optimization time. Since 
factors and limitations can evolve quickly, CAI plays a significant role in health pattern 

analysis. The time it takes for the algorithm to react to scenarios with changing constraints 
is quantified. 

5. Conclusion 
The proposed method of RESH-AMHO thus shows excellent promise for solving 

complex health pattern analysis challenges, especially the more intricate SMOP problems. 
This framework navigates the sparse high-dimensional search spaces within healthcare 

data by integrating two state-of-the-art meta-heuristic optimization schemes: GA and 
PSO. Compared to any other optimization method, the RESH-AMHO approach uniquely 

combines data imputation techniques to handle missing values with multiobjective 
optimization to balance competing health outcomes. The study further established that 

this approach enhances accuracy and reliability in the optimization process, offering more 
valuable insights for doctors and, thus, better detecting of health trends. Hence, the 
RESH-AMHO technique is unique in that it can handle spare and complex health data 

with the added ability to optimize multiple objectives for decision-makers, hence making 
it a worthier healthcare decision-making system. The results, therefore, stipulate that 

healthcare executives can really benefit greatly from the application of meta-heuristic 
approaches in the investigation and improvement of SMOPs in health trends. Developing 

the technique will require tuning its settings to optimize performance on datasets since 
configuration decisions impact efficiency. The inclusion of machine learning approaches, 
such as meta-heuristic algorithms, could also improve the optimization and adaptation of 

the RESH-AMHO processes. 
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