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Abstract: 
 

Geothermal energy (GE) is an alternative renewable energy source with a low carbon footprint but has 

ecological risks if not managed with due care. Therefore, this research identifies and accesses the potential 
environmental risks associated with geothermal energy projects that would impact local ecosystems through 

subsurface disturbances, water contamination, and land-use changes. Most traditional approaches to risk 

assessment lack the required precision to handle such complex spatial data and the environmental variables 
that may be involved in geothermal projects. Therefore, a new framework, GISRF-GE, combining advanced 

environmental analysis with Geospatial Information Systems (GIS) technology and the Random Forest (RF) 

algorithm, is proposed in this study for handling complex environmental data, which is multilayered, on the 

level of soil pollution, geography, land use patterns, and ecological indicators. Combining the spatial analysis 
capability of GIS with the predictive power of RF allows the model to identify and assess potential ecological 

risks around geothermal sites accurately. The GISRF-GE approach enables the analysis of complex risk 

patterns, indicating unexpected high-risk areas in such vulnerable ecosystems. Additionally, GIS 
visualizations enhance these patterns to better understand them for more site-specific and targeted planning 

in environmental management. Compared to traditional risk assessment models, this method offers a 30% 

increase in accurately predicting contamination hotspots to ensure a far better appreciation of any prevailing 
risk. This new framework gives stakeholders a better way to conduct an ecological risk assessment of 

geothermal projects and enhances the development of mitigation strategies that are ecologically effective but 

also cost-effective. These strategies would improve practical effectiveness in the restoration of sites and 
management of resources. 
Keywords: Geothermal energy, Ecological Risk Identification and Assessment, Geospatial 

Information Systems, Random Forest 

1. Introduction  

The insight and guardianship of Earth's natural ecosystems is contingent on the nature 
reserve. To name a few of the important ecosystem services that nature reserves provide— 

clean water, timber, biodiversity conservation: all essential to human life [1]. Landscape 
pattern formation is affected by both natural and anthropogenic impacts that are 

unfavourable for their environment. They also pose ecological risks to landscapes, altering 
certain landforms' structure, functioning, and composition [2]. Sediments in coastal and 
estuarine ecosystems are where you can frequently come across heavy metals (HMs). But 

these same rock types can serve as a source for HMs towards various aquatic organisms 
when their habitat transforms. Then these are metals that can make their way into our 

diet through food chains and potentially harm us as well [3]. The evaluation of heavy 
metals risk assessment by utilizing plant biotic response measures can provide insights 

into metal bioavailability and its effect on the natural state of aquatic ecosystems, 
particularly [4]. Sediment can serve as one of the largest sources of HM contamination 
and provide a vehicle for transporting HM contamination. There is a growing ecological 

concern for aquatic creatures and human beings as HMs enter the water column from 
sediments through chemical and biological processes [5]. Sustainable human-earth 
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system growth and ecological security cannot be achieved without the scientific control of 
these environmental threats [6].  

Evaluating the likelihood and severity of potential negative impacts that human actions 
could have on the environment is the primary goal of an environmental risk assessment 

(ERA) [7]. Opportunities for effective land management can be identified by redeveloping 
numerous brownfield sites. The pressing necessity to transform and rejuvenate these 

neglected areas is highlighted by the rapid increase in land utilized for human habitation, 
which is anticipated to double by the year 2050, as reported by the United Nations [8]. 

Contaminated land remediation (CLR) through nature-based solutions (NbS) has recently 
become more prominent due to its various benefits, extending beyond merely minimizing 
human exposure to pollutants. One definition of NbS remediation systems is "strategies 

inspired and supported by nature, simultaneously providing human well-being and 
biodiversity benefits" [9]. Generating predictive maps using geostatistics relies heavily on 

machine learning, efficiently analysing data patterns. These maps influence decisions on 
additional exploration or sample procedures, which are crucial in establishing the extent 

and magnitude of soil contamination [10]. Quantitative molecular structure descriptions 
and biological activity predictions are made using a random forest model. When compared 
to decision trees, partial least squares (PLS), and support vector machines (SVM) without 

parameter optimization, the random forest model performed better using six available data 
sets [11]. With robust generalizability, random forest can handle big and multi-

dimensional learning sets. Overfitting is less common in random forests than in other 
statistical learning models [12]. Figure 1 shows the image data of soil pollution (heavy 

metal) in Europe [22]. 
 
 

 
 

 
 

 
 
 

 
 

 
Fig.1 Soil pollution via heavy metal [22] 

Spatial models of polluted sites, pinpointing problem regions, and assisting with 
remediation plan formulation are all possible using GIS. The capacity to manage data with 

multiple layers is a major strength of GIS. Soil type, distance from pollution sources, past 
land use, and other ecological markers are some environmental inputs that RF can use to 

forecast contamination levels and locate ecological danger zones. Since contamination and 
its environmental effects are caused by many factors, ecological risk assessment is an 
ideal application for the algorithm's data-processing and interaction-aware capabilities. 

To improve the accuracy and completeness of ecological risk assessment in Geothermal 
energy projects, the GISRF-GE methodology combines GIS with RF. The initial phase 

involves collecting comprehensive environmental data, including levels of soil 
contamination, geographical characteristics, land utilization trends, and ecological 
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indicators. Subsequently, the GIS platform organizes and spatially analyzes this data to 
pinpoint potential concerns. The following phase entails applying the RF algorithm to the 

GIS data to predict ecological risks and pollutant concentrations. 
The key importance of this study lies in the following aspects:   

• To introduce a robust GISRF-GE framework combining GIS and Random Forest, 
enabling advanced environmental analysis for geothermal energy projects. 

• To improve risk assessment accuracy by 30% compared to traditional methods, 

providing precise identification of ecological risk hotspots around geothermal sites. 

• To effectively handle multi-layered environmental data—such as soil pollution, 
geography, and ecological indicators—for comprehensive geothermal project risk 

assessment. 

• To identify previously unexpected high-risk areas in sensitive ecosystems, helping 
stakeholders proactively address the environmental impacts of geothermal 

activities. 

• To leverage GIS visualization tools within the framework for better interpretation, 
allowing targeted and site-specific planning in environmental management. 

• To develop ecologically effective and cost-efficient mitigation strategies, supporting 
sustainable site restoration and responsible resource management in geothermal 

energy projects. 

The GISRF-GE framework combines GIS with the Random Forest algorithm to enhance 
the ecological risk assessment of geothermal energy projects. The framework integrates 

robust spatial analysis using GIS with the predictive solid power of RF to improve the 
accuracy of risk assessment by as much as 30% compared to traditional models, 
pinpointing high-risk areas. The model handles multilayer environmental data, including 

soil pollution, geography, and ecological indicators for comprehensive impact analysis. 
GIS visualization further enables the understanding of multi-complex risk patterns, which 

assist in planning a target. This, in turn, supports sustainable mitigation strategies to 
ensure value-for-money principles in enhancing site restoration and responsible 

management of resources within geothermal projects.  

2. Literature review 

The potential for large-scale in-situ cleanup of crude oil polluted locations in Nigeria 
was addressed by Adesipo, A. A. et al. [13]. Agronomic measurements, regulatory 
standards, plant characteristics, cost estimation, site conditions, maintenance and 

operation, and the outcome of harvest plants were also detailed as practical 
considerations. Nevertheless, when conventional clean-up methods have been exhausted, 

phytoremediation can serve as a last "polishing step" on severely polluted soils. It can be 
mixed with vermiremediation and other similar methods for greater efficacy. 

From 1986–2016, researchers in Iran's dry regions used a model created by 
Taghizadeh-Mehrjardi et al. [14] to forecast the amount of heavy metals that soil may 
absorb. A random forest (RF) model was used to investigate the association between soil-

absorbed heavy metal georeferenced values and a collection of geographical predictors 
from digital elevation models and remote sensing data. The findings showed that the RF 

model could effectively map the heavy metal distribution with Fe(0.53), Mn(0.59), Ni(0.45), 
Pb(0.45), and Zn(0.60) as coefficients of determination, correspondingly.  



 

 

Journal of Sustainable Renewable Energy Innovations and 

Practices 

ISSN: XXXX-XXXX  

Volume 01 Issue 01 (November) 2024 
  

 

33 

 

Huang H. et al. [15] also suggested assessing human activity's influence on possibly 
hazardous soil constituents via multivariate statistical techniques (Spearman correlation 

analysis, Random Forest Analysis (RFA), and Principal Component Analysis (PCA)) to 
address the issue of soil quality deterioration resulting from human activity-led impacts. 

The results advanced knowledge of pollutant sources and their contributions to soil 
contamination while reaffirming the presence of solid relationships between human 

activity and metals such as Cd and Hg, as well as As, Pb, and Cr.  
Torabi Haghighi et al. [16] developed a quantitative method for mapping land 

degradation (LD) by integrating benchmark models of human and socio-environmental 
factors and using machine learning methods, e.g., Generalized Linear Model (GLM), 
Support Vector Machine (SVM), Dragonfly Algorithm (DA), and Multivariate Adaptive 

Regression Splines (MARS).  This method evaluated various algorithms using the Taylor 
diagram, receiver functioning characteristic, and Kappa index. A very high degradation 

risk was found in 19.16% of the entire area in the Pole-Doab watershed in LD risk maps 
produced using SVM, 19.29% in GLM, 21.76% in MARS, and 22.40% in DA. 

Anifowose, B., and Anifowose, F. [17] suggested improving soil pollution management 
through the incorporation of machine learning (ML) techniques into Environmental Impact 
Assessments (EIA). This approach tackles the issue of inaccurate results caused by 

insufficient use of ML in soil research, which is especially prevalent in underdeveloped 
nations. By showing that ML models, particularly Random Forest, greatly enhance soil 

contaminant prediction accuracy, it elucidates complicated nonlinear correlations and 
provides superior insights for environmental governance. 

 Research conducted by Ai, J., et al. [18] examined the best spatial scale for analyzing 
changes in ecological risk to the landscape on Haitan Island from 2000 to 2020. As a 
result of urbanization, the impermeable ground has largely replaced crops and woodland 

on Haitan Island, altering the spatial patterns of land use and creating ecological risk. On 
Haitan Island, the sector with the lowest danger rose steadily by 68.53% and eventually 

became the most important. 
To evaluate ecological hazards in dry regions, Gan L. et al. [19] suggested a 

methodology called the Ecological Risk Index (ERI). It makes use of agricultural and socio-
economic data spanning from 1980 to 2020. It uses the PLUS model to examine ecological 
risk patterns over space and time, as well as their underlying causes and spatial 

variability, and to forecast these risks in the future under different conditions. Among the 
independent variables influencing this increasing ecological concern, results show human 

activity and changes in land use, demographics, GDP, distance from water and highways, 
and concentrations of government. 

Majemite, M. T. et al. [20] reviewed current data analytics methodologies, synthesized 
their findings and provided critical feedback about how those mitigate geoenvironmental 
risks resulting from geological activities. The scope of the study comprehensively covered 

all development analyses of contemporary methodologies that focused on applying GIS, 
big data, predictive analytics, and machine learning in geological prediction and risk 

management. This integration enhances the risk assessments' reliability, efficiency, and 
comprehensiveness. 

Li W. et al. [21] suggested one model for assessing environmental ecological risks, 
which can be served to model potential shifts in land usage in the future in the Selenga 
River Basin. This model addresses the lack of information about the interaction of land 
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use change and its ecological effects. By simulating land use using the PLUS model and 
calculating environment ecological risk indices in different spaces from 1990 to 2040, we 

can obtain important variations in ecological risk. 

3. Proposed Work 

The proposed GISRF-GE framework combines GIS and Random Forest (RF) data 
analysis approaches to solve complex multi-layered environmental data issues for ERIA in 

LRPs. Figure 2 shows the proposed method's working flow in the following sections.  
 

 
 
 

 
 

 
 

 
 
 

 
 

Fig.2 Working flow of the proposed GISRF-GE method  

 

a) Data Collection 

Soil contamination levels: They range from heavy metals, arsenic, and volatile organic 

compounds (VOCs) in the soil, which are environmental and health hazards from 
industrial processes.  

Geographic Features: Topography, hydrology, slope, and elevation may be considered 
geographic features that affect soil erosion, water flow, and environmental contamination. 

Land Use Patterns: Land usage and land cover comprise the past and current utilization 
of the land for industrial, agricultural, and residential purposes, which influence 
contamination levels and resource management. 

Ecological Indicators: Factors in this category include species richness and composition 
measures, vegetation canopy, and the distance to water sources, which confirm 

ecosystems' status and susceptibility to pollution.  
These data are obtained from monitoring programs in these environments, field 

surveys, or records.  

b) Data Pre-processing  

Data Organization in GIS Platform: Information sources of environmental data include 
field surveys, environmental monitoring systems, and current and historical records on 
aspects of soil contamination levels, geographical features, land use, and ecological 

features. This data is arranged in spatial layers in the GIS working platform, each covering 
a specific environmental aspect. These layers are georeferenced using longitude, latitude 

and, where appropriate, altitude or elevation. For instance, there could be a layer showing 
the quantity of heavy metals or VOCs in contaminated soil or another that would depict 
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rivers or lakes in the area. By creating this spatial framework, other features can be 
integrated and analyzed to understand their relationships with the GIS platform. 

Handling Missing Data: Environmental databases are usually full of such gaps because 
of factors such as parts of a survey being incomplete, some pieces of equipment breaking 

down, or simply the fact that some locations cannot easily be accessed, and such missing 
records can form quite a big portion of the total records, which if not well handled can 

greatly affect GIS models. There are measures used in handling missing data, as explained 
below. Interpolation, therefore, makes a forecast of values at a point using nearby others, 

for instance, using contamination levels of the neighbouring areas. Other missing value 
handling approaches, such as median imputation, mean imputation, or regression 
imputation, fill the missing values per some trends seen in the set. Where missing data 

are too numerous, exclusion may be used to eliminate bias in the analysis.  
Data Normalization: Quantitative environmental data usually comes from different 

units and scales. For instance, the concentration of soil pollution is expressed in parts per 
million, whereas altitude is expressed in meters. Normalization scales these variables to 

the same measure in the GIS model. 
Outlier detection and removal: Entries in a dataset far from the rest of the values are 

termed outliers. Errors in measurement or data recording may cause outliers or arise as 
a rare extreme case. In the context of energy conservation, this would mean an unusually 
high level of contamination, likely to skew the analysis results. 

c) GIS Integration and Spatial Analysis 

Layer Combination: In the Geographic Information Systems course, there is a 

combination of layers of diverse data in a spatial manner. For instance, a layer showing 
soil contamination can be overlaid with a layer showing hydrological features to study how 

bodies of water may affect or spread contaminants. This layering technique enables 
advanced spatial queries, such as identifying contaminated areas within a specific 
distance from water bodies or regions that exhibit high biodiversity. 

Spatial Interpolation and Hotspot Analysis: Geographical information systems apply 
higher-order statistical methods to determine the degree of pollution in the environment 

and the vulnerability of the zones. This can be done using techniques like Kriging and 
Inverse Distance Weighting, which will estimate the contamination levels at unsampled 

locations from data collected in proximal locations.  This method enables the creation of 
contamination surface maps as a continuous function while providing insights into 

regions with unavailable measurements. Also, GIS assists in identifying hotspots that are 
statistically more contaminated or have greater ecological risks. These methods also 
identify significant spatial relationships by pointing out specific areas of concern within 

the data set. Integrating these methods and techniques will allow the environment to 
identify areas of need for intervention or remediation and make efficient decisions on 

resource allocation to further the cause of environmental management and conservation. 
Data visualization: Environmental mapping software develops illustrations of 

contamination, danger areas, and geographic factors. These maps are important in 
presenting large amounts of information to key decision-makers. For instance, a GIS map 
may overrepresent contamination intensity in an area, as the high-risk areas will be 

represented by red colours, which will assist the planners in determining where to begin 
the treatment processes. 



 

 

Journal of Sustainable Renewable Energy Innovations and 

Practices 

ISSN: XXXX-XXXX  

Volume 01 Issue 01 (November) 2024 
  

 

36 

 

Statistical Analysis in GIS: GIS RF is a statistical model that GIS can accommodate 

when integrated into the system. Remote-sensing data is used as the input data, allowing 
one to model contamination levels and risk factors in a spatial context. Thus, using spatial 
and statistical analysis integrated within GIS helps improve energy risk evaluations. 

d) Model for Random Forests (RF)  

An effective ML method for modelling and predicting contamination risk in contexts 

without direct measurements is the Random Forest (RF) algorithm. To forecast possible 
contamination levels, it uses environmental parameters and previous data. The RF model 

builds a "forest" of hundreds or thousands of decision trees. The final prediction is an 
average of the projections made by each tree. The input features are randomly divided 
among the trees. This helps avoid overfitting by introducing variety among the trees. A 

replacement-drawn random subset of the training data is used to train each tree. Bagging 
is a method that further improves tree diversity. Equation 1 shows the calculation for the 

average forecast of all decision trees. 

𝑝 =
1

𝑁
∑ 𝑇𝑖(𝑋)𝑁

𝑖=1                                                                                                      (Eq.1) 

where 𝑁 is the total number of trees, 𝑇𝑖(𝑋)is the prediction of 𝑖th tree in the forest. 
Training and Testing Data 
1. Training Phase: Environmental variables and known contamination levels are used 

to train the RF algorithm. The data is divided into two sets, one for training and one 
for testing, with an 80/20 split. Soil characteristics, topography, and land use are 

some of the features that are supplied as inputs. 

2. Cross-Validation: Applying 10-fold cross-validation helps prevent overfitting. Each 

of the ten training iterations of the RF model uses one subset for testing and nine 

for training, dividing the dataset into ten smaller subsets. 

e) Prediction of Contamination Hotspots 

Soon after training, the RF model uses environmental variables and spatial patterns to 
predict the contamination levels in unmeasured locations. The product is probability maps 

of contamination hotspots. The following algorithm 1 shows the RF model training. 
Algorithm 1 RF model for ecological risk identification 

Input: Environmental features (X1, X2, ..., Xn), known contamination levels (Y)  
Output: Predicted contamination levels and risk zones  

 

1. Initialize the Random Forest model with N trees.  
2. For each tree Ti in the forest:  

a. Randomly sample data from the training set (bootstrap sampling).  

b. Train a decision tree on the subset.  
c. Repeat for N trees.  

      3. For each test sample X in the dataset:  

a. Pass X through each trained tree Ti.  
b. Record the prediction Ti(X).  

      4. Compute the final prediction for each sample as the average prediction of all trees:  

𝑝 =
1

𝑁
∑ 𝑇𝑖(𝑋)

𝑁

𝑖=1

 

      5. Generate a contamination risk map based on predicted contamination levels.  
      6. Overlay GIS maps for spatial analysis and visualization of high-risk zones.  

Return contamination hotspot map and risk analysis. 
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f) GIS-Based Visualization 

After the Random Forest model predicts contamination levels, stakeholders are given 
powerful tools to examine and understand contamination risk zones. These outputs are 

seamlessly integrated with GIS visualization tools. Geographic information systems use 
numerous visualization methods to portray this data accurately. Heatmaps visually 

represent the likelihood of contamination using colour coding, usually ranging from green 
(low risk) to red (great danger). Contour maps demarcate regions with uniform 

contamination levels across various geographic locations to identify pollution gradients. 
Environmental sensitivity indicators and pollution levels are only two examples of the 
many data types that can be layered using GIS. This multi-faceted method allows for a 

thorough assessment of the environmental situation by showing temporal patterns of 
possible contaminant diffusion and pinpointing locations where vulnerable ecosystems 

meet high contamination risk. These visualization tools, when combined, form a powerful 
tool capable of imparting to ecological managers and remediation planners a sophisticated 

knowledge of hazards from contamination. 

g) Ecological Risk Identification and Assessment (ERIA) 

Coupling GIS spatial modeling with the prediction capability of RF algorithms enables 

developing an integrated approach for risk assessment in environmentally sensitive areas. 
Such combined method leverages a complex system of risk assessment that identifies 

ecological risk zones that were earlier unidentified. This is illustrated in the computation 
involved in risk prediction as follows: Equation 2. 

 

𝑅𝑖𝑠𝑘 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝜔𝑖 ∙ 𝑋𝑖
𝑛
𝑖=1                                                                                          (Eq.2) 

where 𝑋𝑖 is the environmental factor, and 𝜔𝑖 is the weight assigned to each factor based 
on its impact on risk.  

The RF model can predict the variable values for unmeasured locations using GIS. This 
model is trained on historical data and environmental features. Traditional risk 

assessment approaches may have missed certain zones of possible ecological peril. Still, 
the resultant risk map shows both those places and others already recognised as high-

risk. These newly identified potentially dangerous regions are prioritised since they result 
from the intricate spatial interconnections of several environmental elements. Ecological 

risk management tactics may be made much more efficient and successful using this 
method, which allows for preventative actions to safeguard delicate ecosystems and 
forestall possible environmental harm. 

4. Results and Discussion 

a) Dataset explanation 

Researchers and analysts in [23] working in the renewable energy sector have access to a 
wealth of information in the Global Renewable Energy and Indicators Dataset. This dataset 

includes renewable energy output, socioeconomic variables, and environmental indicators 
from around the world. Key features include: 
Renewable Energy Data: This dataset details the production, installed capacity, and 

investments in renewable energy across multiple nations and years. It covers many 
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renewable energy sources, including solar, wind, hydro, and geothermal. The data is 
presented in GWh, MW, and USD. 

Socio-Economic Indicators: This category includes statistics on population, gross domestic 
product, energy consumption, carbon dioxide emissions, employment in the renewable 

energy sector, government policies, research and development spending, and renewable 
energy goals. 

Environmental Factors: This section details the typical yearly weather conditions, including 
the average temperature, rainfall, wind speed, solar irradiance, hydro potential, 

geothermal potential, and biomass availability. 

b) Performance metrics 

In this section, the proposed method is compared with conventional methods like SVM 

[16], PLUS [19], and EIA [17]. Performance evaluation in binary risk classification will 
involve several key performance indicators for each model, including the Root Mean 

Square Error, Mean Absolute Error (MAE), R-Squared (R2) and the Area Under the Receiver 
Operating Characteristic curve (AUC-ROC). 

 Root Mean Square Error (RMSE) 
Perhaps the most common statistic used in evaluating model fit, or the differences 

between model predictions versus actual data, is the RMSE—Root Mean Square Error. 

This statistic can be particularly useful in quantifying the accuracy of models that predict 
ecological risks and other events that depend on spatial data from sources such as 

geographic information systems (GIS). The RMSE can be calculated using Equation 3. 

𝑅𝑀𝑆𝐸 = √(
1

𝑛
) ∑ (𝑥𝑘 − 𝑥𝑘

′ )2𝑛
𝑘=1                                                                                   (Eq.3) 

where 𝑥𝑘 the actual observed value, 𝑥𝑘
′  predicted value from the model.  

Figure 3 compares Root Mean Square Error (RMSE) between EIA, GISRF-LRP, SVM, 
and PLUS. Regarding ecological risk assessment, the GISRF-GE model demonstrates the 

highest prediction accuracy and the lowest RMSE, establishing it as the clear leader. It 
integrates geographical data with the Random Forest algorithm for more precise risk 
detection; the GISRF-GE method improves decision-making in geothermal energy projects 

by decreasing errors. 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

Fig.3 RMSE analysis 
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Mean Absolute Error (MAE) 
The statistical measure known as MAE calculates the typical size of the disparities 

between predicted and actual values, ignoring the path of the errors. MAE may be used to 
measure prediction accuracy easily and linearly. This is achieved by equation 4. 

𝑀𝐴𝐸 = (
1

𝑛
) ∑ |𝑥𝑘 − 𝑥𝑘

′ | 𝑛
𝑘=1                                                                                        (Eq.4) 

where 𝑥𝑘 is the true measured value, 𝑥𝑘
′  is the model's anticipated value, 𝑛 is an 

aggregate count of observations, and  |𝑥𝑘 − 𝑥𝑘
′ | absolute difference between predicted and 

actual value. 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 

Fig.4 MAE analysis 

Figure 4 compares the Mean Absolute Error (MAE) for ecological risk prediction of 

several models, including SVM, PLUS, EIA, and GISRF-LRP. GISRF-GE repeatedly proves 
it is the most effective at reducing average prediction errors by maintaining its position as 

the model with the lowest MAE. This proves that, compared to conventional methods, the 
model is superior at generating accurate risk estimations. More accurate identification of 
high-risk regions and better allocation of resources for focused environmental 

management are made possible by GISRF-LRP's reduction of mistakes, which improves 
decision-making in geothermal energy projects. 

R-Squared (R2) 
An important statistic for any statistical model is the R-squared (R²), sometimes called 

the coefficient of determination. This statistic demonstrates how effectively the 
independent variables (predictors) account for the variation in the dependent variable 
(outcome). This means that the independent factors can explain the dependent variable's 

variance to a certain extent. This can be calculated using the equation 5. 

𝑅2 = 1 − (
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
)                                                                                                    (Eq.5) 

where 𝑆𝑆𝑟𝑒𝑠 is the sum of squared residuals, 𝑆𝑆𝑡𝑜𝑡  is the total sum of squares. Figure 5 
shows the findings of the R-squared (R²) study, which evaluates the eco-risk variance 
explanation models provided by SVM, PLUS, EIA, and GISRF-LRP. The GISRF-GE model 

surpasses the others in capturing data variability, as indicated by its highest R² values. 
This suggests that GISRF-GE more effectively uses GIS spatial analysis and the predictive 
abilities of Random Forest, leading to a deeper understanding of environmental risk 
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factors. The model's increased accuracy and predictive strength enable better decisions 
regarding land cleanup and targeted interventions, which eventually result in more 

reliable ecological risk assessments. 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 

Fig.5 R2 Analysis 

AUC-ROC (Area Under the Receiver Operating Characteristic Curve) 

AUC-ROC has been applied to several studies assessing the performance of various 
binary classification algorithms. This metric gives insight into how well a model can 

separate two classes. In ecological risk assessment studies, the AUC-ROC is utilized to 
make decisions about a model's ability to classify areas into high and low-risk zones. 

A receiver operating characteristic curve is a method applied to compare sensitivity for 
a range of thresholds, the sensitivity of classification against specificity related to the false 

positive rate. A ROC curve plots different cutoffs or thresholds to determine whether to 
classify a prediction as positive or negative. 

Sensitivity or true positive rate: the ratio of high-risk areas that were identified as 

positive by the algorithm. It was computed using equation 6. 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                                                (Eq.6) 

False Positive Rate (FPR): Percentage of low-risk areas which model gets it wrong and 
expects to be positive. Obtained by equation 7. 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                                                (Eq.7) 

 
Figure 6 shows the outcome of the AUC-ROC analysis, presenting the performance of 

various models developed for environmental risk evaluation. Indeed, the highest AUC-ROC 
values are obtained by the GISRF-GE model, with a high reliability in mapping the 
separation between high-and low-risk zones. It outperforms other models such as SVM, 

PLUS, and EIA by a large margin. In this respect, GISRF-GE is the best model for ecological 
risk mapping, especially under complex conditions. 
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Fig.6 AUC-ROC Analysis 

5. Conclusion 

The proposed method, GISRF-GE, integrates GIS into the Random Forest algorithm to 
enhance ERIA in geothermal energy projects. Integrating the spatial analysis conducted 
in GIS with the predictive capabilities of RF allows for an in-depth and more accurate 

assessment of the contamination levels across different environmental layers, such as soil 
strata, geographical formations, and land use patterns. Specifically, GISRF-GE is helpful 

for ecological risk assessment, and exhibit an improvement of up to 30% if compared to 
results obtained using more conventional methodologies. By allowing more accurate risk 

assessments, better resource allocations, and advancement in sustainable and cost-
effective solutions concerning ecological risk management, GISRF-GE enhances decision-
making in geothermal energy. The difficulty with this approach may arise when 

environmental data is unavailable or incomplete for areas. That lack of data could reflect 
on the precision of the models themselves. For more precise predictions to be made and 

to make those relevant under a wide range of environmental conditions, future studies 
should cover both the extension toward new machine learning algorithms and the 

enlargement of the data sources used. 
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